Editorial by Hafez Ahmad
  • Twitter
  • Facebook
  • linkedin
  • Instagram
  • Medium

Physical Oceanography

Physics of the Ocean

Seawater property means its temperature, salinity, pressure, density, viscosity, conductivity, specific heat, freezing point, and surface tension, etc. so seawater can be characterized by its temperature, salinity, and pressure, those can be calculated by various methods, equations, and toolboxes. The GSW Oceanographic Toolbox of TEOS-­10 is one of the most famous toolboxes.

Julia is a high level ,high performmance ,dynamic programming language. Today , I like to use Julia for sea water properties analysis. I have published a medium post over this with details explanation. I will use GibbsSeaWater julia package. Installation code here,
using Pkg
Pkg.add("GibbsSeaWater")
here the my medium post link

Contents of this Notebook

  1. Calculating practical salinity
  2. Calculating conductivity from practical salinity
  3. Calculating practical salinity from reference salinity
  4. Calculating conservative temperature from in-situ temperature
  5. Calculating potential temperature of ice from the potential enthalpy of ice
  6. Calculating in-situ density, the appropriate thermal expansion coefficient, and the appropriate saline contraction coefficient of seawate
  7. Calculating the potential density of anomaly with reference pressur
  8. Calculating ratio of practical salinity to conservative temperature
  9. Calculating conservative Temperature of the maximum density of seawater
  10. Calculating latent heat of evaporation of water from seawater

In [2]:
print("hafez \n")
print("Hello Julia, I want to analyze the sea water property ")
hafez 
Hello Julia, I want to analyze the sea water property 
In [17]:
using GibbsSeaWater
  1. Calculating practical salinity: Calculates Practical Salinity, SP, from conductivity, C, primarily using the PSS-78 algorithm.
In [21]:
C=[56.6, 56.0,57.7] #conductivity (mS/cm)
T=[6.7,8.8,8.0] #in situ temperature[deg C]
P=[10.0,50.0,125.0] #sea pressure [dbar]
sp=gsw_sp_from_c.(C,T,P)
Out[21]:
3-element Array{Float64,1}:
 60.205764250519124
 55.90574352230805
 59.15643355317229

2. Calculating conductivity from practical salinity

In [20]:
SP = [34.5487,34.7275,34.8605,34.6810, 34.5680, 34.5600,]
t = [28.7856, 28.4329,22.8103, 10.2600, 6.8863, 4.4036,]
p = [ 10,50,125,250,600,1000]
c=gsw_c_from_sp.(SP,t,p)
Out[20]:
3-element Array{Float64,1}:
 60.205764250519124
 55.90574352230805
 59.15643355317229

3.Calculating practical salinity from reference salinity

In [25]:
sr =[28.9,28.4,34.23] #reference salinity
sp=gsw_sp_from_sr.(sr)
Out[25]:
3-element Array{Float64,1}:
 28.76436369758146
 28.26671034641223
 34.06934842104544

4.Calculating conservative temperature from in-situ temperature

In [26]:
sa=[34.5,34.8] # absolute salinity [g/kg]
t=[28.78,22.39]
p=[10.0,50.0]
ct=gsw_ct_from_t.(sa,t,p)
Out[26]:
2-element Array{Float64,1}:
 28.813194838540284
 22.388324558353194

5.Calculating potential temperature of ice from the potential enthalpy of ice

In [27]:
p_en_ice=[-3.44e5,-3.6e5] # potential enthalpy of [j/kg]
pto_ice=gsw_pt_from_pot_enthalpy_ice.(p_en_ice)
Out[27]:
2-element Array{Float64,1}:
  -5.1206614327791815
 -13.002435627806364

6.Calculating in-situ density, the appropriate thermal expansion coefficient, and the appropriate saline contraction coefficient of seawater

In [32]:
ct=[34.5,35.05] # conservative temperture
sa=[28.8,22.7] # absolute salinity
p=[10.0,50.0] # sea pressure
rlb=gsw_rho_alpha_beta.(sa,ct,p)
println(rlb)
[(1015.5685729873671, 0.000354907633029042, 0.0007107817598093406), (1011.1431663112612, 0.000350046257837302, 0.0007117665364787327)]

7.Calculating the potential density of anomaly with reference pressure

In [31]:
ct=[34.5,35.05] # conservative temperture
sa=[28.8,22.7] # absolute salinity
sigmaO=gsw_sigma0.(sa,ct)
Out[31]:
2-element Array{Float64,1}:
 15.526794528021924
 10.932838722273118

8.Calculating ratio of practical salinity to conservative temperature

In [30]:
SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
CT = [ 3.7856, 3.4329, 2.8103, 1.2600, 0.6886, 0.4403]
p = [ 10.0, 50.0, 125.0, 250.0, 600.0, 1000]
t_Ih = [-10.7856, -13.4329, -12.8103, -12.2600, -10.8863, -8.4036] # in situe temperature of the ice ath p pressure p
melting_ice_SA_CT_ratio=gsw_melting_ice_sa_ct_ratio.(SA,CT,p,t_Ih)
Out[30]:
6-element Array{Float64,1}:
 0.3738409090224898
 0.37187851497209873
 0.3771046646221908
 0.38277769679615625
 0.3871338451519997
 0.3939473160269136

9.Calculating conservative Temperature of the maximum density of seawater

In [29]:
rho=[1021.86,1022.26] # density of seawater [kg/m²]
ct=[28.2,22.05] # conservative temperture
p=[10.0,50.0] # sea pressure
sa=gsw_sa_from_rho.(rho,ct,p)
Out[29]:
2-element Array{Float64,1}:
 34.46541767129753
 32.268428894258854

10.Calculating latent heat of evaporation of water from seawater

In [28]:
ct=[28.2,22.05] # conservative temperture
sa=[28.8,22.7] # absolute salinity
latentheat_eva_Ct=gsw_latentheat_evap_ct.(sa,ct)
Out[28]:
2-element Array{Float64,1}:
 2.431963327876637e6
 2.4471032313880725e6
In [ ]:

  • Learn More
Figure 1: TS_plot

Figure 2: Argo data _in the Bay of Bengal

Data analysis methods in Physical Oceanography

  1. Basic Sampling Requirements and techniques
  2. Lagrangian Methods
  3. Data Calibration and interpolation
  4. Stochastic Processes and stationarity
  5. Regime shift Detection
  6. Gridded Data analysis Method
  7. Mixed layer Depth Estimation
  8. wavelet analysis
  9. Fourier analysis
  10. Regime shift Detection

.

  • Learn More
swell direction and wave period over Bay of Bengal

Get in touch

I love to work in the field of Oceanography and Data analysis.If you think, you can contact with me at any moment.

  • hafezahmad100@gmail.com
  • (+880)1785601208
  • Bangladesh
    Chittagong,Kotowali

© hafez. All rights reserved. : hafez. Design: hafez ahmad.